E5 timeseries molecular mRNA-WGBS machine learning analysis Part 1
This post details an exploratory analysis to try out machine learning analyses to predict mRNA state from WGBS state for the E5 time series molecular project.
This script is conducted for Acropora pulchra - we will run the other species next.
Apul time series mRNA-WGBS machine learning predictions
Set up
Load libraries
library(tidyverse)
library(ggplot2)
library(DESeq2)
library(igraph)
library(psych)
library(tidygraph)
library(ggraph)
library(WGCNA)
library(edgeR)
library(reshape2)
library(ggcorrplot)
library(corrplot)
library(rvest)
library(purrr)
library(pheatmap)
library(glmnet)
library(caret)
Load and format data
Gene expression mRNA data.
# RNA variance stabilized counts data
genes <- read_csv("D-Apul/output/02.20-D-Apul-RNAseq-alignment-HiSat2/apul-gene_count_matrix.csv")
genes<-as.data.frame(genes)
rownames(genes)<-genes$gene_id
genes<-genes%>%select(!gene_id)
Load metadata.
metadata<-read_csv("M-multi-species/data/rna_metadata.csv")%>%select(AzentaSampleName, ColonyID, Timepoint)%>%
filter(grepl("ACR", ColonyID))
colonies<-unique(metadata$ColonyID)
Load physiology data.
phys<-read_csv("https://github.com/urol-e5/timeseries/raw/refs/heads/master/time_series_analysis/Output/master_timeseries.csv")%>%filter(colony_id_corr %in% colonies)%>%
select(colony_id_corr, species, timepoint, site, Host_AFDW.mg.cm2, Sym_AFDW.mg.cm2, Am, AQY, Rd, Ik, Ic, calc.umol.cm2.hr, cells.mgAFDW, prot_mg.mgafdw, Ratio_AFDW.mg.cm2, Total_Chl, Total_Chl_cell, cre.umol.mgafdw)
#add site information into metadata
metadata$Site<-phys$site[match(metadata$ColonyID, phys$colony_id_corr)]
Load WGBS data.
#pull processed files from Gannet
# Define the base URL
base_url <- "https://gannet.fish.washington.edu/seashell/bu-github/timeseries_molecular/D-Apul/output/15.5-Apul-bismark/"
# Read the HTML page
page <- read_html(base_url)
# Extract links to files
file_links <- page %>%
html_nodes("a") %>%
html_attr("href")
# Filter for files ending in "processed.txt"
processed_files <- file_links[grepl("processed\\.txt$", file_links)]
# Create full URLs
file_urls <- paste0(base_url, processed_files)
# Function to read a file from URL
read_processed_file <- function(url) {
read_table(url, col_types = cols(.default = "c")) # Read as character to avoid parsing issues
}
# Import all processed files into a list
processed_data <- lapply(file_urls, read_processed_file)
# Name the list elements by file name
names(processed_data) <- processed_files
# Print structure of imported data
str(processed_data)
# add a header row that has "CpG" for the first column and "sample" for the second column, which will be populated by the file name
processed_data <- Map(function(df, filename) {
colnames(df) <- c("CpG", filename) # Rename columns
return(df)
}, processed_data, names(processed_data)) # Use stored file names
#merge files together by "CpG"
merged_data <- purrr::reduce(processed_data, full_join, by = "CpG")
# Print structure of final merged data
str(merged_data)
Replace any NA with 0.
# Convert all columns (except "CpG") to numeric and replace NAs with 0
merged_data <- merged_data %>%
mutate(across(-CpG, as.numeric)) %>% # Convert all except CpG to numeric
mutate(across(-CpG, ~ replace_na(.x, 0))) # Replace NA with 0 in numeric columns
Filter data sets
Only keep CpGs that have a non-zero value in all samples.
filtered_data <- merged_data %>%
filter(if_all(-CpG, ~ .x > 0))
We had 12,093,025 CpGs before filtering and have only 507 after filtering. This makes sense because most CpGs were not methylated in all samples.
Only keep the sample information in the column name.
colnames(filtered_data) <- gsub("^(.*?)_.*$", "\\1", colnames(filtered_data))
Next I will format the genes, WGBS, and physiology data sets to have consistent sample ID naming.
Only keep genes that are non-zero in all samples.
filtered_genes <- genes %>%
filter(if_all(everything(), ~ .x > 0))
There were 44371 genes identified with 10717 genes kept after filtering to only keep genes detected >0 in all samples.
Rename samples to be consistent between data sets
The goal is to have each data frame with the feature as row names and sample ID (ACR-ID-TP) as column names.
Format metadata.
metadata$code<-paste0(metadata$ColonyID, "-", metadata$Timepoint)
Format gene data set.
# Create a named vector for mapping: SampleName -> colonyID
rename_map <- setNames(metadata$code, metadata$AzentaSampleName)
# Rename matching columns in the gene dataset
colnames(filtered_genes) <- ifelse(colnames(filtered_genes) %in% names(rename_map),
rename_map[colnames(filtered_genes)],
colnames(filtered_genes))
View differences in column names between genes and wgbs data sets.
setdiff(colnames(filtered_data), colnames(filtered_genes))
## [1] "CpG"
All colony names match!
Set CpG id as rownames in the wgbs dataset.
filtered_data<-as.data.frame(filtered_data)
rownames(filtered_data)<-filtered_data$CpG
filtered_data<-filtered_data%>%
select(!CpG)
The genes and wgbs data sets are now formatted the same way.
Set metadata with samples as column names.
metadata<-as.data.frame(metadata)
rownames(metadata)<-metadata$code
metadata<-metadata%>%
select(ColonyID, Timepoint, Site)
Transform data
Set the order of genes, wgbs, and metadata to all be the same.
# Ensure rownames of metadata are used as the desired column order
desired_order <- rownames(metadata)
# Find columns in genes_data that match the desired order
matching_columns <- intersect(desired_order, colnames(filtered_genes))
# Reorder columns in genes_data to match metadata rownames
filtered_genes <- filtered_genes %>%
select(all_of(matching_columns))
# Print the updated column order
print(colnames(filtered_genes))
print(rownames(metadata))
Repeat for wgbs data.
# Find columns in genes_data that match the desired order
matching_columns <- intersect(desired_order, colnames(filtered_data))
# Reorder columns in genes_data to match metadata rownames
filtered_data <- filtered_data %>%
select(all_of(matching_columns))
# Print the updated column order
print(colnames(filtered_data))
print(rownames(metadata))
Use a variance stabilized transformation for the genes and wgbs data sets.
dds_genes <- DESeqDataSetFromMatrix(countData = filtered_genes,
colData = metadata,
design = ~ Timepoint * Site)
## converting counts to integer mode
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
# Variance Stabilizing Transformation
vsd_genes <- assay(vst(dds_genes, blind = TRUE))
I had to round wgbs data to whole integers for normalization - need to return to this to decide if this is appropriate.
str(filtered_data)
#round to integers
filtered_data<-filtered_data %>%
mutate(across(where(is.numeric), round))
dds_wgbs <- DESeqDataSetFromMatrix(countData = filtered_data,
colData = metadata,
design = ~ Timepoint * Site)
# Variance Stabilizing Transformation
vsd_wgbs <- assay(varianceStabilizingTransformation(dds_wgbs, blind = TRUE))
Feature selection
Reduce dimensionality through feature selection.
str(vsd_wgbs)
str(vsd_genes)
There are more CpGs than genes in our dataset, so we need to reduce dimensionality.
Reduce features using a pca and keep the top 20 PCs. We can return to this later to see if we want to include more PCs.
Reduce genes.
# Perform PCA on gene expression matrix
pca_genes <- prcomp(t(vsd_genes), scale. = TRUE)
# Select top PCs that explain most variance (e.g., top 50 PCs)
explained_var <- summary(pca_genes)$importance[2, ] # Cumulative variance explained
num_pcs <- min(which(cumsum(explained_var) > 0.9)) # Keep PCs that explain 90% variance
gene_pcs <- as.data.frame(pca_genes$x[, 1:num_pcs]) # Extract selected PCs
Reduce genes.
# Perform PCA on gene expression matrix
pca_wgbs <- prcomp(t(vsd_wgbs), scale. = TRUE)
# Select top PCs that explain most variance (e.g., top 50 PCs)
explained_var <- summary(pca_wgbs)$importance[2, ] # Cumulative variance explained
num_pcs <- min(which(cumsum(explained_var) > 0.9)) # Keep PCs that explain 90% variance
wgbs_pcs <- as.data.frame(pca_wgbs$x[, 1:num_pcs]) # Extract selected PCs
dim(gene_pcs)
## [1] 40 21
dim(wgbs_pcs)
## [1] 40 24
We have 21 gene expression PCs and 24 WGBS PCs.
# Ensure sample matching between gene and methylation PCs
common_samples <- intersect(rownames(gene_pcs), rownames(wgbs_pcs))
gene_pcs <- gene_pcs[common_samples, ]
wgbs_pcs <- wgbs_pcs[common_samples, ]
Train elastic models to predict gene expression PCs from methylation PCs.
train_models <- function(response_pcs, predictor_pcs) {
models <- list()
for (pc in colnames(response_pcs)) {
y <- response_pcs[[pc]] # Gene expression PC
X <- as.matrix(predictor_pcs) # Methylation PCs as predictors
# Train elastic net model (alpha = 0.5 for mix of LASSO & Ridge)
model <- cv.glmnet(X, y, alpha = 0.5)
models[[pc]] <- model
}
return(models)
}
# Train models predicting gene expression PCs from methylation PCs
models <- train_models(gene_pcs, wgbs_pcs)
Extract feature importance.
get_feature_importance <- function(models) {
importance_list <- lapply(models, function(model) {
coefs <- as.matrix(coef(model, s = "lambda.min"))[-1, , drop = FALSE] # Convert to regular matrix & remove intercept
# Convert to data frame
coefs_df <- data.frame(Feature = rownames(coefs), Importance = as.numeric(coefs))
return(coefs_df)
})
# Combine feature importance across all predicted gene PCs
importance_df <- bind_rows(importance_list) %>%
group_by(Feature) %>%
summarize(MeanImportance = mean(abs(Importance)), .groups = "drop") %>%
arrange(desc(MeanImportance))
return(importance_df)
}
feature_importance <- get_feature_importance(models)
head(feature_importance, 20) # Top 20 predictive methylation PCs
## # A tibble: 20 × 2
## Feature MeanImportance
## <chr> <dbl>
## 1 PC22 0.326
## 2 PC9 0.254
## 3 PC10 0.227
## 4 PC8 0.222
## 5 PC5 0.217
## 6 PC15 0.210
## 7 PC4 0.206
## 8 PC23 0.204
## 9 PC6 0.186
## 10 PC7 0.179
## 11 PC20 0.167
## 12 PC11 0.159
## 13 PC3 0.154
## 14 PC18 0.147
## 15 PC21 0.138
## 16 PC16 0.138
## 17 PC13 0.123
## 18 PC19 0.120
## 19 PC12 0.116
## 20 PC2 0.104
Evaluate performance.
evaluate_model_performance <- function(models, response_pcs, predictor_pcs) {
results <- data.frame(PC = colnames(response_pcs), R2 = NA)
for (pc in colnames(response_pcs)) {
y <- response_pcs[[pc]]
X <- as.matrix(predictor_pcs)
model <- models[[pc]]
preds <- predict(model, X, s = "lambda.min")
R2 <- cor(y, preds)^2 # R-squared metric
results[results$PC == pc, "R2"] <- R2
}
return(results)
}
performance_results <- evaluate_model_performance(models, gene_pcs, wgbs_pcs)
summary(performance_results$R2)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.1221 0.3658 0.5542 0.5167 0.7092 0.8128 6
Plot results.
# Select top 20 predictive methylation PCs
top_features <- feature_importance %>% top_n(20, MeanImportance)
# Plot
ggplot(top_features, aes(x = reorder(Feature, MeanImportance), y = MeanImportance)) +
geom_bar(stat = "identity", fill = "steelblue") +
coord_flip() + # Flip for readability
theme_minimal() +
labs(title = "Top 20 Predictive Methylation PCs",
x = "Methylation PC",
y = "Mean Importance")
ggplot(performance_results, aes(x = PC, y = R2)) +
geom_point(color = "darkred", size = 3) +
geom_hline(yintercept = mean(performance_results$R2, na.rm = TRUE), linetype = "dashed", color = "blue") +
theme_minimal() +
labs(title = "Model Performance Across Gene Expression PCs",
x = "Gene Expression PC",
y = "R² (Variance Explained)") +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) # Rotate labels
## Warning: Removed 6 rows containing missing values or values outside the scale range
## (`geom_point()`).
View components associated with PCs
# Get the PCA rotation (loadings) matrix from the original WGBS PCA
wgbs_loadings <- pca_wgbs$rotation # Each column corresponds to a PC
# Identify the top predictive PCs (from feature importance)
top_predictive_pcs <- feature_importance$Feature[1:5] # Select top 5 most predictive PCs
# Extract the loadings for those PCs
top_loadings <- wgbs_loadings[, top_predictive_pcs, drop = FALSE]
# Convert to data frame and reshape for plotting
top_loadings_df <- as.data.frame(top_loadings) %>%
rownames_to_column(var = "CpG") %>%
pivot_longer(-CpG, names_to = "Methylation_PC", values_to = "Loading")
# View top CpGs contributing most to each PC
top_cpgs <- top_loadings_df %>%
group_by(Methylation_PC) %>%
arrange(desc(abs(Loading))) %>%
slice_head(n = 20) # Select top 10 CpGs per PC
print(top_cpgs)
## # A tibble: 100 × 3
## # Groups: Methylation_PC [5]
## CpG Methylation_PC Loading
## <chr> <chr> <dbl>
## 1 CpG_ptg000027l_13526774 PC10 0.141
## 2 CpG_ptg000027l_13526778 PC10 0.139
## 3 CpG_ptg000027l_13526776 PC10 0.134
## 4 CpG_ptg000024l_4334180 PC10 -0.134
## 5 CpG_ptg000023l_16429552 PC10 0.130
## 6 CpG_ptg000024l_4334178 PC10 -0.125
## 7 CpG_ptg000024l_4334569 PC10 0.117
## 8 CpG_ptg000024l_4334182 PC10 -0.115
## 9 CpG_ptg000016l_4107446 PC10 0.113
## 10 CpG_ptg000047l_404708 PC10 -0.112
## # ℹ 90 more rows
View top 20 CpGs associated with PC9 (the most important PC)
print(top_cpgs%>%filter(Methylation_PC=="PC9"))
## # A tibble: 20 × 3
## # Groups: Methylation_PC [1]
## CpG Methylation_PC Loading
## <chr> <chr> <dbl>
## 1 CpG_ptg000023l_15451833 PC9 -0.154
## 2 CpG_ptg000016l_831394 PC9 0.129
## 3 CpG_ptg000031l_13258965 PC9 -0.120
## 4 CpG_ptg000024l_4334495 PC9 0.119
## 5 CpG_ptg000030l_2489083 PC9 -0.118
## 6 CpG_ptg000024l_4334221 PC9 0.112
## 7 CpG_ptg000022l_5439870 PC9 0.109
## 8 CpG_ptg000022l_5985634 PC9 -0.108
## 9 CpG_ptg000012l_5662480 PC9 -0.107
## 10 CpG_ptg000008l_19954852 PC9 -0.107
## 11 CpG_ptg000024l_4334485 PC9 0.106
## 12 CpG_ntLink_6_20175819 PC9 -0.104
## 13 CpG_ptg000023l_15451819 PC9 -0.101
## 14 CpG_ptg000016l_831268 PC9 0.101
## 15 CpG_ptg000031l_13258948 PC9 -0.0988
## 16 CpG_ptg000031l_5818313 PC9 -0.0977
## 17 CpG_ntLink_6_20175807 PC9 -0.0959
## 18 CpG_ptg000024l_4334521 PC9 0.0942
## 19 CpG_ptg000001l_2901983 PC9 0.0935
## 20 CpG_ptg000024l_213653 PC9 0.0920
ggplot(top_cpgs, aes(x = reorder(CpG, abs(Loading)), y = Loading, fill = Methylation_PC)) +
geom_bar(stat = "identity") +
coord_flip() +
theme_minimal() +
labs(title = "Top CpGs Contributing to Most Predictive Methylation PCs",
x = "CpG Site",
y = "Loading Strength") +
facet_grid(~Methylation_PC, scales = "free_y") # Separate plots for each PC
View predicted vs actual gene expression values to evaluate model.
# Choose a gene expression PC to visualize (e.g., the most predictable one)
best_pc <- performance_results$PC[which.max(performance_results$R2)]
# Extract actual and predicted values for that PC
actual_values <- gene_pcs[[best_pc]]
predicted_values <- predict(models[[best_pc]], as.matrix(wgbs_pcs), s = "lambda.min")
# Create data frame
prediction_df <- data.frame(
Actual = actual_values,
Predicted = predicted_values
)
# Scatter plot with regression line
ggplot(prediction_df, aes(x = Actual, y = lambda.min)) +
geom_point(color = "blue", alpha = 0.7) +
geom_smooth(method = "lm", color = "red", se = FALSE) +
theme_minimal() +
labs(title = paste("Predicted vs. Actual for", best_pc),
x = "Actual Gene Expression PC",
y = "Predicted Gene Expression PC") +
annotate("text", x = min(actual_values), y = max(predicted_values),
label = paste("R² =", round(max(performance_results$R2, na.rm=TRUE), 3)),
hjust = 0, color = "black", size = 5)
## `geom_smooth()` using formula = 'y ~ x'
ggplot(performance_results, aes(y = R2)) +
geom_boxplot(fill = "lightblue", alpha = 0.7) +
theme_minimal() +
labs(title = "Distribution of Predictive Performance (R²) Across PCs",
y = "R² (Variance Explained)")
## Warning: Removed 6 rows containing non-finite outside the scale range
## (`stat_boxplot()`).
# Compute correlation between actual and predicted gene expression PCs
predicted_matrix <- sapply(models, function(m) predict(m, as.matrix(wgbs_pcs), s = "lambda.min"))
# Ensure matrices are the same size
predicted_matrix <- predicted_matrix[, colnames(gene_pcs), drop = FALSE] # Align columns
# Compute correlation matrix, handling missing values
cor_matrix <- cor(predicted_matrix, as.matrix(gene_pcs), use = "pairwise.complete.obs")
# Replace NA or Inf values with zero
cor_matrix[is.na(cor_matrix) | is.infinite(cor_matrix)] <- 0
# Plot heatmap
pheatmap(cor_matrix, color = colorRampPalette(c("blue", "white", "red"))(50),
main = "Correlation Between Actual and Predicted Gene Expression PCs",
fontsize = 10)
The correlations showing 0 in the heatmap are those in which the predicted value did not correlate at all with the actual value. Some of the PCs are more predictive than others.